Structural analyses reveal two distinct families of nucleoside phosphorylases.
نویسندگان
چکیده
The reversible phosphorolysis of purine and pyrimidine nucleosides is an important biochemical reaction in the salvage pathway, which provides an alternative to the de novo purine and pyrimidine biosynthetic pathways. Structural studies in our laboratory and by others have revealed that only two folds exist that catalyse the phosphorolysis of all nucleosides, and provide the basis for defining two families of nucleoside phosphorylases. The first family (nucleoside phosphorylase-I) includes enzymes that share a common single-domain subunit, with either a trimeric or a hexameric quaternary structure, and accept a range of both purine and pyrimidine nucleoside substrates. Despite differences in substrate specificity, amino acid sequence and quaternary structure, all members of this family share a characteristic subunit topology. We have also carried out a sequence motif study that identified regions of the common subunit fold that are functionally significant in differentiating the various members of the nucleoside phosphorylase-I family. Although the substrate-binding sites are arranged similarly for all members of the nucleoside phosphorylase-I family, a comparison of the active sites from the known structures of this family indicates significant differences between the trimeric and hexameric family members. Sequence comparisons also suggest structural identity between the nucleoside phosphorylase-I family and both 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase and AMP nucleosidase. Members of the second family of nucleoside phosphorylases (nucleoside phosphorylase-II) share a common two-domain subunit fold and a dimeric quaternary structure, share a significant level of sequence identity (>30%) and are specific for pyrimidine nucleosides. Members of this second family accept both thymidine and uridine substrates in lower organisms, but are specific for thymidine in mammals and other higher organisms. A possible relationship between nucleoside phosphorylase-II and anthranilate phosphoribosyltransferase has been identified through sequence comparisons. Initial studies in our laboratory suggested that members of the nucleoside phosphorylase-II family require significant domain movements in order for catalysis to proceed. A series of recent structures has confirmed our hypothesis and provided details of these conformational changes. Structural studies of the nucleoside phosphorylases have resulted in a wealth of information that begins to address fundamental biological questions, such as how Nature makes use of the intricate relationships between structure and function, and how biological processes have evolved over time. In addition, the therapeutic potential of suppressing the nucleoside phosphorylase activity in either family of enzymes has motivated efforts to design potent inhibitors. Several research groups have synthesized a variety of nucleoside phosphorylase inhibitors that are at various stages of preclinical and clinical evaluation.
منابع مشابه
Ribosyl and deoxyribosyl transfer by bacterial enzyme systems.
The enzymatic transfer of ribose and deoxyribose residues in pyrimidine nucleosides to purines was catalyzed by cell-free extracts of various bacteria. Almost all the strains belonging to Enterobacteriaceae were capable of catalyzing the transfer reactions. The transfer activities were also detected among some bacterial strains of other families: Pseudomonadaceae, Corynebacteriaceae, Micrococca...
متن کاملStructural analysis of two enzymes catalysing reverse metabolic reactions implies common ancestry.
The crystal structure of the dimeric anthranilate phosphoribosyltransferase (AnPRT) reveals a new category of phosphoribosyltransferases, designated as class III. The active site of this enzyme is located within the flexible hinge region of its two-domain structure. The pyrophosphate moiety of phosphoribosylpyrophosphate is co-ordinated by a metal ion and is bound by two conserved loop regions ...
متن کاملCharacterization of pyrimidine nucleoside phosphorylase of Mycoplasma hyorhinis: implications for the clinical efficacy of nucleoside analogues.
In the present paper we demonstrate that the cytostatic and antiviral activity of pyrimidine nucleoside analogues is markedly decreased by a Mycoplasma hyorhinis infection and show that the phosphorolytic activity of the mycoplasmas is responsible for this. Since mycoplasmas are (i) an important cause of secondary infections in immunocompromised (e.g. HIV infected) patients and (ii) known to pr...
متن کاملInsights into Phosphate Cooperativity and Influence of Substrate Modifications on Binding and Catalysis of Hexameric Purine Nucleoside Phosphorylases
The hexameric purine nucleoside phosphorylase from Bacillus subtilis (BsPNP233) displays great potential to produce nucleoside analogues in industry and can be exploited in the development of new anti-tumor gene therapies. In order to provide structural basis for enzyme and substrates rational optimization, aiming at those applications, the present work shows a thorough and detailed structural ...
متن کاملEnzymatic synthesis and phosphorolysis of 4(2)-thioxo- and 6(5)-azapyrimidine nucleosides by E. coli nucleoside phosphorylases
The trans-2-deoxyribosylation of 4-thiouracil (4SUra) and 2-thiouracil (2SUra), as well as 6-azauracil, 6-azathymine and 6-aza-2-thiothymine was studied using dG and E. coli purine nucleoside phosphorylase (PNP) for the in situ generation of 2-deoxy-α-D-ribofuranose-1-phosphate (dRib-1P) followed by its coupling with the bases catalyzed by either E. coli thymidine (TP) or uridine (UP) phosphory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 361 Pt 1 شماره
صفحات -
تاریخ انتشار 2002